\(\int \frac {(a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x))}{\sec ^{\frac {9}{2}}(c+d x)} \, dx\) [220]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 237 \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {16 a^2 (2 A+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (5 A+7 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 (19 A+21 C) \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+7 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {8 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)} \]

[Out]

2/105*a^2*(19*A+21*C)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/9*A*(a+a*sec(d*x+c))^2*sin(d*x+c)/d/sec(d*x+c)^(7/2)+8/6
3*A*(a^2+a^2*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(5/2)+4/21*a^2*(5*A+7*C)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+16/15*
a^2*(2*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)
^(1/2)*sec(d*x+c)^(1/2)/d+4/21*a^2*(5*A+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2
*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4172, 4102, 4081, 3872, 3854, 3856, 2720, 2719} \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a^2 (19 A+21 C) \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+7 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 (5 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {16 a^2 (2 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {8 A \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^2}{9 d \sec ^{\frac {7}{2}}(c+d x)} \]

[In]

Int[((a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(9/2),x]

[Out]

(16*a^2*(2*A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (4*a^2*(5*A + 7*
C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^2*(19*A + 21*C)*Sin[c + d*x]
)/(105*d*Sec[c + d*x]^(3/2)) + (4*a^2*(5*A + 7*C)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]]) + (2*A*(a + a*Sec[c
+ d*x])^2*Sin[c + d*x])/(9*d*Sec[c + d*x]^(7/2)) + (8*A*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(63*d*Sec[c + d
*x]^(5/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4081

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 4102

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rule 4172

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 \int \frac {(a+a \sec (c+d x))^2 \left (2 a A+\frac {3}{2} a (A+3 C) \sec (c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx}{9 a} \\ & = \frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {8 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 \int \frac {(a+a \sec (c+d x)) \left (\frac {3}{4} a^2 (19 A+21 C)+\frac {3}{4} a^2 (11 A+21 C) \sec (c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx}{63 a} \\ & = \frac {2 a^2 (19 A+21 C) \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {8 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}-\frac {8 \int \frac {-\frac {45}{4} a^3 (5 A+7 C)-21 a^3 (2 A+3 C) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{315 a} \\ & = \frac {2 a^2 (19 A+21 C) \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {8 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{15} \left (8 a^2 (2 A+3 C)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{7} \left (2 a^2 (5 A+7 C)\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (19 A+21 C) \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+7 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {8 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (2 a^2 (5 A+7 C)\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{15} \left (8 a^2 (2 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {16 a^2 (2 A+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {2 a^2 (19 A+21 C) \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+7 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {8 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (2 a^2 (5 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {16 a^2 (2 A+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (5 A+7 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 (19 A+21 C) \sin (c+d x)}{105 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (5 A+7 C) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {8 A \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.32 (sec) , antiderivative size = 206, normalized size of antiderivative = 0.87 \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\frac {a^2 e^{-i d x} \sqrt {\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (240 (5 A+7 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-448 i (2 A+3 C) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\cos (c+d x) (2688 i A+4032 i C+60 (23 A+28 C) \sin (c+d x)+14 (37 A+18 C) \sin (2 (c+d x))+180 A \sin (3 (c+d x))+35 A \sin (4 (c+d x)))\right )}{1260 d} \]

[In]

Integrate[((a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(9/2),x]

[Out]

(a^2*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*(240*(5*A + 7*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]
- (448*I)*(2*A + 3*C)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)
*(c + d*x))] + Cos[c + d*x]*((2688*I)*A + (4032*I)*C + 60*(23*A + 28*C)*Sin[c + d*x] + 14*(37*A + 18*C)*Sin[2*
(c + d*x)] + 180*A*Sin[3*(c + d*x)] + 35*A*Sin[4*(c + d*x)])))/(1260*d*E^(I*d*x))

Maple [A] (verified)

Time = 7.67 (sec) , antiderivative size = 408, normalized size of antiderivative = 1.72

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (-560 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+1840 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-2368 A -252 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (1568 A +672 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-387 A -273 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+75 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-168 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+105 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-252 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(408\)
parts \(\text {Expression too large to display}\) \(949\)

[In]

int((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-4/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-560*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*
c)^10+1840*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+(-2368*A-252*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(
1568*A+672*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-387*A-273*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+7
5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-168*A*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+105*C*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-252*C*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 227, normalized size of antiderivative = 0.96 \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (15 i \, \sqrt {2} {\left (5 \, A + 7 \, C\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 i \, \sqrt {2} {\left (5 \, A + 7 \, C\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 84 i \, \sqrt {2} {\left (2 \, A + 3 \, C\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 84 i \, \sqrt {2} {\left (2 \, A + 3 \, C\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (35 \, A a^{2} \cos \left (d x + c\right )^{4} + 90 \, A a^{2} \cos \left (d x + c\right )^{3} + 7 \, {\left (16 \, A + 9 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 30 \, {\left (5 \, A + 7 \, C\right )} a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{315 \, d} \]

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

-2/315*(15*I*sqrt(2)*(5*A + 7*C)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 15*I*sqrt(2)*
(5*A + 7*C)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 84*I*sqrt(2)*(2*A + 3*C)*a^2*weier
strassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 84*I*sqrt(2)*(2*A + 3*C)*a^2*we
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (35*A*a^2*cos(d*x + c)^4 + 9
0*A*a^2*cos(d*x + c)^3 + 7*(16*A + 9*C)*a^2*cos(d*x + c)^2 + 30*(5*A + 7*C)*a^2*cos(d*x + c))*sin(d*x + c)/sqr
t(cos(d*x + c)))/d

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(9/2), x)

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(9/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac {9}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}} \,d x \]

[In]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2)/(1/cos(c + d*x))^(9/2),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2)/(1/cos(c + d*x))^(9/2), x)